DFT Studies on the performance of Pristine and Si-doped Fullerenes (C20 and SiC19) as Adsorbent and Sensor for Methyl Paraben

Document Type : Original Research Article

Authors

1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

3 Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

4 Department of Chemistry, Safadasht Branch, Islamic Azad University, Tehran, Iran

10.22034/nmrj.2024.01.008

Abstract

The research investigated the performances of pristine and Si-doped fullerenes (C20 and SiC19) as an adsorbent and sensor for the removal and detection of methyl paraben (MP) using density functional theory computations. The results indicated that MP interaction with C20 is experimentally impossible, endothermic, and non-spontaneous, suggesting that C20 is not an effective adsorbent for the removal of MP. On the other hand, MP adsorption on the surface of SiC19 is experimentally feasible, exothermic, spontaneous, and thermodynamically reversible, indicating that SiC19 could be a potential adsorbent for the removal of MP. The study also scrutinized the effects of water as the solvent and changing temperature on the thermodynamic parameters. The findings revealed that both parameters do not have any meaningful effects on the interactions in the case of both adsorbents. Additionally, the Frontier Molecular Orbital (FMO) analysis showed that SiC19is more conductive than C20. Moreover, the bandgap of C20 did not experience significant changes during the adsorption process, while the bandgap of SiC19 decreased from 5.840 eV to 3.270 eV. This implies that Si-doped fullerene can be utilized as a good electrocatalytic modifier for the electrochemical detection of methyl paraben. In conclusion, the research provides valuable insights into the potential use of Si-doped fullerene (SiC19) as an effective adsorbent and sensor for the removal and detection of methyl paraben. 

Keywords

Main Subjects


1.‎ Crovetto SI, Moreno E, Dib AL, Espigares M, Espigares E. Bacterial toxicity testing and antibacterial ‎activity of parabens. Toxicol. Environ. Chem., 2017;99:858-868.‎ https://doi.org/10.1080/02772248.2017.1300905
‎2.‎ Jonkers N, Sousa A, Galante-Oliveira S, Barroso C, Kohler H-P, Giger W. Occurrence and sources of ‎selected phenolic endocrine disruptors in Ria de Aveiro. Portugal, Environ. Sci. Pollut. Res., 2010;17:834-843.‎ https://doi.org/10.1007/s11356-009-0275-5
‎3.‎ Steter JR, Rocha RS, Dionisio D, Lanza MRV, Motheo AJ. Electrochemical oxidation route of methyl ‎paraben on a boron-doped diamond anode. Electrochim. Acta, 2014;117:127-133.‎ https://doi.org/10.1016/j.electacta.2013.11.118
‎4.‎ Dantas RF, Rossiter O, Teixeiraa AKR, Simões ASM, Silva VLD. Direct UV photolysis of propranolol and ‎metronidazole in aqueous solution. Chem. Eng. J., 2010;158(2):143-147.‎ https://doi.org/10.1016/j.cej.2009.12.017
‎5.‎ Sgroi M, Snyder S, Roccaro P. Comparison of AOPs at pilot scale: energy costs for micro-pollutants ‎oxidation, disinfection by-products formation and pathogens inactivation. Chemosphere, 2021;273:128527.‎
https://doi.org/10.1016/j.chemosphere.2020.128527
‎6.‎ Dhaka S, Kumar R, Lee SH, Kurade MB, Jeon BH. Degradation of ethyl paraben in aqueous medium using ‎advanced oxidation processes: efficiency evaluation of UV-C supported oxidants. J. Clean. Prod., 2018;180:505-513.‎ https://doi.org/10.1016/j.jclepro.2018.01.197
‎7.‎ Fang H, Gao Y, Li G, An J, Wong P-K, Fu H, Yao S, Nie X, An T. Advanced oxidation kinetics and ‎mechanism of preservative propylparaben degradation in aqueous suspension of TiO2 and risk assessment of its ‎degradation products. Environ. Sci. Technol., 2013;47:2704-2712.‎ https://doi.org/10.1021/es304898r
‎8.‎ Gomes JF, Frasson D, Pereira JL, Gonçalves FJM, Castro LM, Quinta- Ferreira RM, Martins RC. ‎Ecotoxicity variation through parabens degradation by single and catalytic ozonation using volcanic rock. Chemical ‎Engineering Journal, 2019;360:30-37. ‎https://doi.org/10.1016/j.cej.2018.11.194
‎9.‎ Derikvandi H, Nezamzadeh-Ejhieh A. Increased photocatalytic activity of NiO and ZnO in ‎photodegradation of a model drug in aqueous solution: effect of cupling, supporting, particle size and calcination ‎temperature. J. Hazard. Mater.,2017;321:629-638.‎ https://doi.org/10.1016/j.jhazmat.2016.09.056
‎10.‎ Pipolo M, Gmurek M, Corceiro V, Costa R, Quinta-Ferreira ME, Ledakowicz S, Quinta-Ferreira RM, ‎Martins RC. Ozone-based technologies for parabens removal from water: Toxicity assessment. Ozone Sci. Eng., ‎‎2017;39:233-243.‎ https://doi.org/10.1080/01919512.2017.1301246
‎11.‎ Martins RC, Gmurek M, Rossi AF, Corceiro V, Costa R, Quinta-Ferreira ME, Ledakowicz S, Quinta-‎Ferreira RM. Application of Fenton oxidation to reduce the toxicity of mixed parabens. Water Sci. Technol., ‎‎2016;74:1687-1875.‎ https://doi.org/10.2166/wst.2016.374
‎12.‎ Safari GH, Nasseri S, Mahvi AH, Yaghmaeian K, Nabizadeh R, Alimohammadi M. Optimization of ‎sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. J. Environ. ‎Health Sci. Eng., 2015;13:76.‎ https://doi.org/10.1186/s40201-015-0234-7
‎13.‎ Foureaux AFS, Reis EO, Lebron Y, Moreira V, Santos LV, Amaral MS, Lange LC. Rejection of ‎pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Sep. Purif. ‎Technol.,2019;212:171-179.‎ https://doi.org/10.1016/j.seppur.2018.11.018
‎14.‎ Zhu J, Lu Z, Jing X, Wang X, Liu Q, Wu L. Adsorption of temozolomide chemotherapy drug on the ‎pristine BC3NT: quantum chemical study. Chem Pap, 2020;74:4525-4531. ‎https://doi.org/10.1007/s11696-020-01232-z
‎15.‎ Zhao H, Hou S, Zhao X, Liu D‏.‏‎ Adsorption and pH-responsive release of tinidazole on metal-organic ‎framework CAU-1. J Chem Eng Data, 2019;64:1851-1858. ‎https://doi.org/10.1021/acs.jced.9b00106
‎16.‎ Miller TW, Siringan FP, Tanabe S. Determination of preservative and antimicrobial compounds in fish ‎from Manila Bay, Philippines using ultra high performance liquid chromatography tandem mass spectrometry, and ‎assessment of human dietary exposure. J. Hazard. Mater., 2011;192 (3):1739-1745.‎ https://doi.org/10.1016/j.jhazmat.2011.07.006
‎17.‎ Alnajjar A, AbuSeada HH, Idris AM. Capillary electrophoresis for the determination of norfloxacin and ‎tinidazole in pharmaceuticals with multi-response optimization. Talanta, 2007;72(2):842-6. https://doi.org/10.1016/j.talanta.2006.11.025
‎18.‎ Lopez-Darias J, Pino V, Meng Y, Anderson JL, Afonso AM. Utilization of a benzyl functionalized ‎polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and ‎alkylphenols in waters using solid phase microextraction coupled to gas chromatography-flame ionization ‎detection. J. Chromatogr. A., 2010;1217(46):7189-7197.‎ https://doi.org/10.1016/j.chroma.2010.09.016
‎19.‎ Ioannidi A, Frontistis Z, Mantzavinos D. Destruction of propyl paraben by persulfate activated with UV-A ‎light emitting diodes. J. Environ. Chem. Eng., 2018;6:2992-2997.‎ https://doi.org/10.1016/j.jece.2018.04.049
‎20.‎ Goyal RN, Rana ARS, Chasta H. Electrochemical sensor for the sensitive determination of norfloxacin in ‎human urine and pharmaceuticals. Bioelectrochemistry, 2012;83:46-51.‎ https://doi.org/10.1016/j.bioelechem.2011.08.006
‎21.‎ Privett BJ, Shin JH, Schoenfisch MH. Electrochemical Sensors. Anal. Chem., 2010;82(12):4723-41.‎ https://doi.org/10.1021/ac101075n
‎22.‎ Radovan C, Cinghitǎ D, Manea F, Mincea M, Cofan C, Ostafe V. Electrochemical sensing and assessment ‎of parabens in hydro-alcoholic solutions and water using a boron-doped diamond electrode. Sensors, ‎‎2008;8(7):4330-4349.‎ https://doi.org/10.3390/s8074330
‎23.‎ Hamnca S, Phelane L, Iwuoha E, Baker P. Electrochemical Determination of Neomycin and Norfloxacin at ‎a Novel Polymer Nanocomposite Electrode in Aqueous Solution. Anal. Lett., 2017;50(12):1887-96. ‎https://doi.org/10.1080/00032719.2016.1261876
‎24.‎ Jalali Sarvestani MR, Majedi S. A DFT study on the interaction of alprazolam with fullerene (C20). Chem ‎Lett.,2020;1:32-38.‎
‎25.‎ Doroudi Z, Jalali Sarvestani MR. Boron nitride nanocone as an adsorbent and senor for Ampicillin: a ‎computational study. Chem Rev Lett., 2020;3:110-116. ‎
26.‎ Ahmadi R, Jalali Sarvestani MR. Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based ‎Nanostructures: A Density Functional Theory Investigation. Russ. J. Phys. Chem. B., 2020;14(1):198-208.‎ https://doi.org/10.1134/S1990793120010194
‎27.‎ Shahzad H, Ahmadi R, Adhami F, Najafpour J. Adsorption of Cytarabine on the Surface of Fullerene C20: A ‎Comprehensive DFT Study. Eurasian Chem Commun, 2020;2:162-169.‎ https://doi.org/10.33945/SAMI/ECC.2020.2.1
‎28.‎ Tang C, Zhu W, Zou H, Zhang A, Gong J, Tao C (2012) Density functional study on the electronic ‎properties, polarizabilities, NICS values, and absorption spectra of fluorinated fullerene derivative C60F17CF3. ‎Comput Theor Chem., 2012;991:154-160. ‎https://doi.org/10.1016/j.comptc.2012.04.015
‎29.‎ Elhaes H, Ibrahim M. Fullerene as sensor for halides: modeling approach. J Comput Theor Nanosci., ‎‎2013;10:2026-2028. ‎https://doi.org/10.1166/jctn.2013.3164
‎30.‎ GaussView, Version 6.1, Dennington R, Todd K, and John M. Semichem Inc., Shawnee Mission, KS, 2016.‎
‎31.‎ Melchor S, Dobado JA. CoNTube: An Algorithm for Connecting Two Arbitrary Carbon Nanotubes. ‎Journal of Chemical Information and Computing Science, 2004;44(5):1639-1646. ‎https://doi.org/10.1021/ci049857w
‎32.‎ Gaussian 16, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, ‎Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts ‎R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi ‎F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, ‎Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, ‎Throssell K, Montgomery Jr, Peralta JA, Ogliaro JE, Bearpark F, Heyd MJ, Brothers JJ, Kudin EN, Staroverov KN, ‎Keith VN, Kobayashi TA, Normand R, Raghavachari J, Rendell K, Burant AP, Iyengar JC, Tomasi SS, Cossi J, ‎Millam M, Klene JM, Adamo M, Cammi C, Ochterski R, Martin JW, Morokuma RL, Farkas K, Foresman O, Fox ‎JB, Gaussian, DJ. Inc., Wallingford CT, 2016; GaussView 5.0. Wallingford, E.U.A.‎
‎33.‎ Hassani, B., Karimian, M., Ghoreishi Amin, N. DFT Studies on 10 Chromenes Derivatives Performance as ‎Sensing Materials for Electrochemical Detection of Lithium (I). Int. J. New. Chem., 2024; 11(3): 204-215. ‎
‎34.‎ Tayebi-Moghaddam S, Aliakbari M, Tayeboun K. Fullerene (C24) as a Potential Sensor for the Detection of ‎Acrylamide: A DFT study. Int. J. New. Chem.,2023;11(2):82-89.‎
‎35.‎ Rezaei Sameti M, Barandisheh Naghibi M. A quantum assessment of the interaction between Si12C12, ‎BSi11C12, BSi12C11, NSi11C12 and NSi12C11 nanocages with Glycine amino acid: A DFT, TD-DFT and AIM study. Int. ‎J. New. Chem., 2024;11(1):15-33.‎
‎36.‎ Abrahi Vahed S, Hemmati Tirabadi F.Carbon Nanocone as a Potential Adsorbent and Sensor for the ‎Removal and Detection of Ciprofloxacin: DFT Studies. Int. J. New. Chem., 2023;10(4):288-298. ‎ https://doi.org/10.22034/ijnc.2023.706140
‎37.‎ Mohammad Alipour F, Babazadeh M, Vessally E, Hosseinian A, Delir Kheirollahi Nezhad P. Theoretical ‎study of some graphene-Like nanoparticles as the anodes in K−ion Batteries. Int. J. New. Chem., 2023;10(3):197-212. ‎ https://doi.org/10.22034/ijnc.2022.552410.1295
‎38.‎ Farahani R, Madrakian T, Afkhami A. Investigating the performance of a recently synthesized covalent ‎organic framework as an adsorbent for methylene blue: A DFT Study. Int. J. New. Chem., 2023;9(4):383-392.‎ https://doi.org/10.22034/ijnc.2023.706008
‎39.‎ Takano Y, Houk KN. Benchmarking the conductor-like polarizable continuum model (CPCM) for ‎aqueous solvation free energies of neutral and ionic organic molecules. Journal of Chemical Theory and ‎Computation, 2005;1(1):70-77.‎ https://doi.org/10.1021/ct049977a
‎40.‎ Jalali Sarvestani MR, Abrahi Vahed S, Ahmadi R. Cefalexin adsorption on the surface of pristine and Al-‎doped boron nitride nanocages (B12N12 and AlB11N12): A theoretical study. S. Afr. J. Chem. Eng., 2024; 47:60-66.‎ https://doi.org/10.1016/j.sajce.2023.10.008
‎41.‎ Jalali Sarvestani MR, Qomi M, Arabi S. Norfloxacin Adsorption on the Surface of B12N12 and Al12N12 ‎Nanoclusters: A Comparative DFT Study Nanomed. Res. J., 2023; 8(4), 393-400.‎
‎42.‎ Jalali Sarvestani MR, Doroudi Z. Tinidazole Adsorption on the Surface of Pristine and Al-Doped Boron ‎Nitride Nanocages: A Comprehensive Theoretical Study Russ. J. Phys. Chem. A., 2023;97(6):1282-1289. ‎https://doi.org/10.1134/S0036024423060195
‎43.‎ Jalali Sarvestani MR, Doroudi Z. Alprazolam Adsorption on the Surface of Boron Nitride Nanocage ‎‎(B12N12): A DFT Investigation Russ. J. Phys. Chem. A., 2021;95(Suppl 2):S338 S345. ‎https://doi.org/10.1134/S0036024421150231
‎44.‎ Jalali Sarvestani MR, Doroudi Z, Ahmadi R. Picric Acid Adsorption on the Surface of Pristine and Al-‎doped Boron Nitride Nanocluster: a Comprehensive Theoretical Study Russ. J. Phys. Chem. B., 2022;16(1):185-196. ‎ https://doi.org/10.1134/S1990793122010286
‎45.‎ Beheshtian J, Kamfiroozi M, Bagheri Z, Peyghan AA. B12N12 Nano-cage as Potential Sensor for NO2 ‎Detection. Chinese. J. Chem. Phys., 2012;25(1):60-64.‎ https://doi.org/10.1088/1674-0068/25/01/60-64
‎46.‎ Shakerzadeh E. A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 ‎nanocluster. Physica E Low Dimens. Syst. Nanostruct., 2016;78:1-9.‎chttps://doi.org/10.1016/j.physe.2015.11.038