Controlled Delivery of Levothyroxine using a Drug carrier Cu(II) metal-organic framework

Document Type : Original Research Article

Authors

1 Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, 67149, Ahvaz, Iran

2 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 67149, Ahvaz, Iran

10.22034/nmrj.2024.01.005

Abstract

Populations suffer from chronic disorders especially hypothyroidism. To decrease thyroid-stimulating hormone (TSH) and medicate hypothyroidism in patients were diagnosed with thyroid cancer and nodular thyroid disease, levothyroxine is utilized clinically.  Applications of metal-organic frameworks (MOFs) in various fields of medicine have attracted much attention. Loading levothyroxine onto the nanostructured Cu(II)-MOFs, Cu(II)-BTC, as well as subsequent drug release behavior were studied. Nanostructured Cu(II)-BTC was used to load and release the drug levothyroxine. The obtained results confirmed that besides effects regarding the stability and release of the levothyroxine in phosphate buffer solution (pH=7.4, 10 mM), surface characteristics would affect compounds affinity towards particles. The morphology investigation of the surface roughness was characterized by SEM and AFM. Drug loading amount was determined by Thermal Gravimetric Analysis (TGA). The drug release profiles are characterized by UV spectrophotometry in phosphate buffer solution (PBS), which confirms that they are released in their active form. The release of levothyroxine was studied by detecting in 7 days. The concentration of levothyroxine increased; it was achieved to normal limitation (12.5 μg mL-1). Based on the results, 10 μM concentration of levothyroxine was determined within 24 h as IC50 concentration in WJMSCs. A comparison of levothyroxine and loading levothyroxine showed that the amount of levothyroxine cytotoxicity was significantly higher than loading levothyroxine (P <0.05). Also, there were significant morphological changes such as shrinkage in treated cells with levothyroxine than loading levothyroxine.

Graphical Abstract

Controlled Delivery of Levothyroxine using a Drug carrier Cu(II) metal-organic framework

Keywords

Main Subjects


  1. Ju, J., Gu, Z., Liu, X., Zhang, S., Peng, X., & Kuang, T. (2020). Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol., 147, 1164-1173. https://doi.org/10.1016/j.ijbiomac.2019.10.085
  2. Yao, C. H., Chen, K. Y., Cheng, M. H., Chen, Y. S., & Huang, C. H. (2020). Effect of genipin crosslinked chitosan scaffolds containing SDF-1 on wound healing in a rat model. Mater. Sci. Eng. C, 109, 110368. https://doi.org/10.1016/j.msec.2019.110368
  3. Kim, C., Kim, H., Park, H., & Lee, K. Y. (2019). Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr. Polym., 223, 115045. https://doi.org/10.1016/j.carbpol.2019.115045
  4. Lin, W.; Cui, Y.; Yang, Y.; Hu, Q.; Qian, G. (2018) A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier, Dalton Trans., 47, 15882-15887. https://doi.org/10.1039/C8DT03202E
  5. Liu, W.; Liu, L.; Ji, G.; Li, D.; Zhang, Y.; Ma, J.; Du, Y. (2017) Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties, ACS Sustain. Chem. Eng., 5, 7961-71. https://doi.org/10.1021/acssuschemeng.7b01514
  6. Lu, L.; Ma, M.; Gao, C.; Li, H.; Li, L.; Dong, F.; Xiong, Y. (2020) Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery, Pharmaceutics., 12, 98-113. https://doi.org/10.3390/pharmaceutics12020098
  7. Orellana-Tavra, C.; Köppen, M.; Li, A.; Stock, N.; Fairen-Jimenez, D. (2020) Biocompatible, Crystalline, and Amorphous Bismuth-Based Metal-Organic Frameworks for Drug Delivery, ACS Appl. Mater. Interfaces., 12, 5633-41. https://doi.org/10.1021/acsami.9b21692
  8. Liu, W.; Zhong, Y.; Wang, X.; Zhuang, C.; Chen, J.; Liu, D.; Xiao, W.; Pan, Y.; Huang, J.; Liu, J. (2020) A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery, Inorg. Chem. Commun., 111, 107675-107689. https://doi.org/10.1016/j.inoche.2019.107675
  9. Ricco, R.; Liang, S.; Gassensmith, J.J.; Caruso, F.; Doonan, F.; Falcaro, P. (2018) Metal−Organic Frameworks for Cell and Virus Biology: A Perspective, ACS Nano, 12, 13-23. https://doi.org/10.1021/acsnano.7b08056
  10. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C (2018) Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine, Adv. Mater., 1707365-1707380. https://doi.org/10.1002/adma.201707365
  11. Davis, M. E., Chen, Z., & Shin, D. M. (2010). Nanoparticle therapeutics: an emerging treatment modality for cancer. J. Nanosci. Nanotechnol.: A collection of reviews from nature journals (pp. 239-250). https://doi.org/10.1142/9789814287005_0025
  12. Dyson, P. J., & Sava, G. (2006). Metal-based antitumour drugs in the post genomic era. Dalton Trans., 16, 1929-1933. https://doi.org/10.1039/b601840h
  13. Huxford, R. C., Della Rocca, J., & Lin, W. (2010). Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol, 14(2), 262-268. https://doi.org/10.1016/j.cbpa.2009.12.012
  14. Anglin, E. J., Schwartz, M. P., Ng, V. P., Perelman, L. A., & Sailor, M. J. (2004). Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir, 20(25), 11264-11269. https://doi.org/10.1021/la048105t
  15. Salonen, J., Kaukonen, A. M., Hirvonen, J., & Lehto, V. P. (2008). Mesoporous silicon in drug delivery applications. J. Pharm. Sci., 97(2), 632-653. https://doi.org/10.1002/jps.20999
  16. Kashanian, S., Rostami, E., Harding, F. J., McInnes, S. J., Al-Bataineh, S., & Voelcker, N. H. (2016). Controlled delivery of levothyroxine using porous silicon as a drug nanocontainer. Aust. J. Chem., 69(2), 204-211. https://doi.org/10.1071/CH15315
  17. Epstein, P. M. (2012). Bone and the cAMP signaling pathway: emerging therapeutics. In Bone-Metabolic Functions and Modulators , 271-287. Springer, London. https://doi.org/10.1007/978-1-4471-2745-1_16
  18. Blakesley, V. A. (2005). Current methodology to assess bioequivalence of levothyroxine sodium products is inadequate. AAPS J., 7(1), E42-E46. https://doi.org/10.1208/aapsj070105
  19. Mandel, S. J., Brent, G. A., & Larsen, P. R. (1993). Levothyroxine therapy in patients with thyroid disease. Ann. Intern. Med., 119(6), 492-502. https://doi.org/10.7326/0003-4819-119-6-199309150-00009
  20. Colucci, P., Yue, C. S., Ducharme, M., & Benvenga, S. (2013). A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. Eur. J. Endocrinol., 9(1), 40. https://doi.org/10.17925/EE.2013.09.01.40
  21. Padula, C., Pappani, A., & Santi, P. (2008). In vitro permeation of levothyroxine across the skin. Int. J. Pharm., 349(1-2), 161-165. https://doi.org/10.1016/j.ijpharm.2007.08.004
  22. Azarbayjani, A. F., Venugopal, J. R., Ramakrishna, S., Lim, F. C., Chan, Y. W., & Chan, S. Y. (2010). Smart polymeric nanofibers for topical delivery of levothyroxine. J. Pharm. Pharm. Sci., 13(3), 400-410. https://doi.org/10.18433/J3TS3G
  23. Rostami, E., Kashanian, S., & Azandaryani, A. H. (2014). Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol. Biol. Rep., 41(5), 3521-3527. https://doi.org/10.1007/s11033-014-3216-4
  24. Kashanian, S., & Rostami, E. (2014). PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J. Nanoparticle Res., 16(3), 2293. https://doi.org/10.1007/s11051-014-2293-6
  25. Rostami, E., Kashanian, S., & Askari, M. (2014). The effect of ultrasound wave on levothyroxine release from chitosan nanoparticles. In Adv Mat Res., 829, 284-288. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.829.284
  26. Schall Jr, R. F., Fraser, A. S., Hansen, H. W., Kern, C. W., & Tenoso, H. J. (1978). A sensitive manual enzyme immunoassay for thyroxine. Clin. Chem., 24(10), 1801-1804. https://doi.org/10.1093/clinchem/24.10.1801
  27. Xiao, J., Zhu, Y., Huddleston, S., Li, P., Xiao, B., Farha, O. K., & Ameer, G. A. (2018). Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS nano, 12(2), 1023-1032. https://doi.org/10.1021/acsnano.7b01850
  28. Zhuang, Y., Zhang, S., Yang, K., Ren, L., & Dai, K. (2020). Antibacterial activity of copper‐bearing 316L stainless steel for the prevention of implant‐related infection. J. Biomed. Mater. Res., 108(2), 484-495. https://doi.org/10.1002/jbm.b.34405
  29. Loera-Serna, S., Oliver-Tolentino, M. A., de Lourdes López-Núñez, M., Santana-Cruz, A., Guzmán-Vargas, A., Cabrera-Sierra, R., & Flores, J. (2012). Electrochemical behavior of Cu3 (BTC) 2. metal-organic framework: The effect of the method of synthesis. J. Alloys Compd., 540, 113-120. https://doi.org/10.1016/j.jallcom.2012.06.030
  30. Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., ... & Reedijk, J. (2013). Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Provisional Recommendation). Research Triangle Park, NC.
  31. Horcajada, P., Serre, C., Maurin, G., Ramsahye, N. A., Balas, F., Vallet-Regi, M., ... & Férey, G. (2008). Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 130(21), 6774-6780. https://doi.org/10.1021/ja710973k
  32. James, S. L. (2003). Metal-organic frameworks. Chem. Soc. Rev., 32(5), 276-288. https://doi.org/10.1039/b200393g
  33. Li, Y., Miao, J., Sun, X., Xiao, J., Li, Y., Wang, H., ... & Li, Z. (2016). Mechanochemical synthesis of Cu-BTC@ GO with enhanced water stability and toluene adsorption capacity. Chem. Eng. J., 298, 191-197. https://doi.org/10.1016/j.cej.2016.03.141
  34. Hosseini, M. S., Zeinali, S., & Sheikhi, M. H. (2016). Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B Chem., 230, 9-16. https://doi.org/10.1016/j.snb.2016.02.008
  35. Salonen, J., Laitinen, L., Kaukonen, A. M., Tuura, J., Björkqvist, M., Heikkilä, T., ... & Lehto, V. P. (2005). Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J controlled release, 108(2-3), 362-374. https://doi.org/10.1016/j.jconrel.2005.08.017
  36. Y. Orooji, M. Ghanbari, O. Amiri and M. Salavati-Niasari, J. Hazard. Mater., 2020, 389, 122079. https://doi.org/10.1016/j.jhazmat.2020.122079
  37. M. Karami, M. Ghanbari, H. A. Alshamsi, S. Rashki and M. Salavati-Niasari, Inorg. Chem. Front., 2021, 8, 2442-2460. https://doi.org/10.1039/D1QI00155H
  38. Yan, W., Hsiao, V. K., Zheng, Y. B., Shariff, Y. M., Gao, T., & Huang, T. J. (2009). Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films, 517(5), 1794-1798. https://doi.org/10.1016/j.tsf.2008.09.080
  39. Miller, S. R., Heurtaux, D., Baati, T., Horcajada, P., Grenèche, J. M., & Serre, C. (2010). Biodegradable therapeutic MOFs for the delivery of bioactive molecules. ChemComm, 46(25), 4526-4528. https://doi.org/10.1039/c001181a
  40. Cai, X., Xie, Z., Ding, B., Shao, S., Liang, S., Pang, M., & Lin, J. (2019). Monodispersed Copper (I)‐Based Nano Metal-Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. Adv. Sci. Lett., 6(15), 1900848. https://doi.org/10.1002/advs.201900848
  41. Gulcay, E., & Erucar, I. (2019). Biocompatible MOFs for Storage and Separation of O2: A Molecular Simulation Study. Ind. Eng. Chem. Res., 58(8), 3225-3237. https://doi.org/10.1021/acs.iecr.8b04084
  42. Lin, W., Cui, Y., Yang, Y., Hu, Q., & Qian, G. (2018). A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier. Dalton Trans., 47(44), 15882-15887. https://doi.org/10.1039/C8DT03202E
  43. Neisi, Z., Ansari-Asl, Z., Jafarinejad-Farsangi, S., Tarzi, M. E., Sedaghat, T., & Nobakht, V. (2019). Synthesis, characterization and biocompatibility of polypyrrole/Cu (II) metal-organic framework nanocomposites. Colloids Surfaces B, 178, 365-376.
    https://doi.org/10.1016/j.colsurfb.2019.03.032
  44. Gan, S., Tong, X., Zhang, Y., Wu, J., Hu, Y., & Yuan, A. (2019). Covalent Organic Framework‐Supported Molecularly Dispersed Near‐Infrared Dyes Boost Immunogenic Phototherapy against Tumors. Adv. Funct. Mater., 29(46), 1902757 https://doi.org/10.1002/adfm.201902757
  45. Gautam, S,. Singhal , J., Lee , H.K., Chae K.H., (2022). Drug delivery of paracetamol by metal-organic frameworks (HKUST-1): improvised synthesis and investigations. Mater. Today Chem., 23(100647). https://doi.org/10.1016/j.mtchem.2021.100647
  46. Ansari-Asl, Z., Shahvali, Z., Sacourbaravi, R., Hoveizi, E., Darabpour, E., (2022). Cu (II) metal-organic framework@ Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous and Mesoporous Materials., 336 111866. https://doi.org/10.1016/j.micromeso.2022.111866
  47. Ischakov, R., Adler-Abramovich, L., Buzhansky, L., Shekhter, T., Gazit, E., (2013). Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic & medicinal chemistry. 21 3517-22. https://doi.org/10.1016/j.bmc.2013.03.012
  48. Zhao, H., Hao, S., Fu, Q., Zhang, X., Meng, L., Xu, F., Yang, J., (2022) Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chemistry of Materials., 34 5258-72. https://doi.org/10.1021/acs.chemmater.2c00934
  49. Ahmed, K., Hassan, MM., Kabir, MA., (2021) Handbook of Polymer and Ceramic Nanotechnology for Biomedical Applications. Springer., pp 1357-75. https://doi.org/10.1007/978-3-030-40513-7_83