Synthesis of silver nanoparticles using Phyllanthus emblica leaf extract: Characterization, antioxidant, anti-inflammatory and antileishmanial activity against L. donovani

Document Type : Original Research Article

Authors

1 Department of Biochemistry, Bundelkhand University, Jhansi-284128, India

2 Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Rd, Pune - 411 007, India

10.22034/nmrj.2024.01.002

Abstract

Objective(s): The objective of the study was to examine the antioxidant potential, anti-inflammatory, and anti-leishmanial activity of silver nanoparticles (AgNPs) synthesized from the extract of Phyllanthus emblica leaves.
Methods: UV–Vis spectroscopy, FTIR, FESEM, and Zeta potential were used to examine the green synthesized nanoparticles. A DPPH free radical scavenging assay was used to study the antioxidant activity.  Anti-inflammatory activity was conducted to observe the inhibition of protein denaturation. The MTT assay was used to evaluate the anti-leishmanial activity against Leishmania donovani.
Results: The UV–Vis spectroscopy study at the band of 440 nm confirmed the fabrication of nanoparticles. FTIR confirmed the ingredients in P. emblica leaf extract which is responsible for capping and reducing the AgNPs. FESEM reported the AgNPs synthesized in the size range of 40–50 nm. The results showed a simple and feasible approach for obtaining aqueous monodispersive AgNPs. Furthermore, the biological potential of the biosynthesized AgNPs was examined. Concerning this, the dose-dependent antioxidant potential of AgNPs was identified to be comparable to standard ascorbic acid. This also applies to the anti-inflammatory properties. The study findings indicate that all concentrations of AgNPs exhibit anti-leishmanial action. After being exposed for 72 hours, the concentration of 100 µg/mL of AgNPs exhibited the most potent anti-leishmanial activity, achieving 100% effectiveness. Further, the IC50 content of AgNPs on L. donovani after 24, 48, and 72 hours was calculated to be 45.88, 36.86, and 24.81 µg/mL, respectively.
Conclusion: The results stated that the synthesized AgNPs using P. emblica leaves have the most potent in vitro antioxidant, anti-inflammatory and anti-leishmanial activity. Further investigation into its potential biomedical applications is needed.

Graphical Abstract

Synthesis of silver nanoparticles using Phyllanthus emblica leaf extract: Characterization, antioxidant, anti-inflammatory and antileishmanial activity against L. donovani

Keywords

Main Subjects


  1. Kim BY, Rutka JT, Chan WC. Nanomedicine. The New England Journal of Medicine. 2010; 363:2434-43. https://doi.org/10.1056/NEJMra0912273
  2. Irache JM, Esparza I, Gamazo C, Agüeros M, Espuelas S. Nanomedicine:novel approaches in human and veterinary therapeutics. Veterinary Parasitology. 2011;180:47-71. https://doi.org/10.1016/j.vetpar.2011.05.028
  3. Rico CM, Majumdar S, Duarte-Gardea M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry. 2011; 59:3485-98.https://doi.org/10.1021/jf104517j
  4. Gogoi B, Kumar R, Upadhyay J, Borah D. Facile biogenic synthesis of silver nanoparticles (AgNPs) by Citrus grandis (L.) Osbeck fruit extract with excellent antimicrobial potential against plant pathogens. SN Applied Sciences. 2020;2:1-7. https://doi.org/10.1007/s42452-020-03529-w
  5. Ajitha B, Reddy YAK, Reddy PS. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science and Engineering. 2015; 49:373-81. https://doi.org/10.1016/j.msec.2015.01.035
  6. Perumal S, Gopal Samy MV, Subramanian D. Selenium nanoparticle synthesis from endangered medicinal herb (Enicostemaaxillare). Bioprocess and Biosystems Engineering. 2021; 44:1853-1863. https://doi.org/10.1007/s00449-021-02565-z
  7. Haris Z, Khan AU. Selenium nanoparticle enhanced photodynamic therapy against biofilm forming streptococcus mutans. International Journal of Life-Sciences Scientific Research. 2017; 3:1287-94. https://doi.org/10.21276/ijlssr.2017.3.5.4
  8. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences. 2014;103:1931-44. https://doi.org/10.1002/jps.24001
  9. Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Raees K. Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 2018; 8: 586. https://doi.org/10.3390/nano8080586
  10. Jain A, Malik A, Malik HK. Mathematical modelling of seed-mediated size-specific growth of spherical silver nanoparticles using Azadirachtaindica leaf extract. Journal of Taibah University for Science. 2020;14:873-80. https://doi.org/10.1080/16583655.2020.1782642
  11. PanyalaNR , Peña-Méndez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? Journal of Applied Biomedicine. 2008;6: 117-29. https://doi.org/10.32725/jab.2008.015
  12. Akinola P, Lateef A, Asafa T, Beukes L, Hakeem A, Irshad H. Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: Antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon. 2020;6:e04610. https://doi.org/10.1016/j.heliyon.2020.e04610
  13. Behravan M, HosseinPanahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules. 2019;124:148-54. https://doi.org/10.1016/j.ijbiomac.2018.11.101
  14. Hembram KC, Kumar R, Kandha L, Parhi PK, Kundu CN, Bindhani BK. Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(sup3):S38-S51. https://doi.org/10.1080/21691401.2018.1489262
  15. Zahir AA,Chauhan IS,Bagavan A,Kamaraj C,Elango G,Shankar J, Arjaria N,SelvarajRoopan M,Rahuman AA,Singh N. Green Synthesis of Silver and Titanium Dioxide Nanoparticles Using Euphorbia prostrataExtract Shows Shift from Apoptosis to G0/G1 Arrest followed by Necrotic Cell Death in LeishmaniaDonovan.iAntimicrobial Agents Chemotherapy. 2015;59(8):4782-99. https://doi.org/10.1128/AAC.00098-15
  16. Handman E, Bullen DV. Interaction of Leishmania with the host macrophage. Trends in Parasitology. 2002;18:332-34. https://doi.org/10.1016/S1471-4922(02)02352-8
  17. Tyler KM, Myler PJ, Fasel N. Leishmania - After the Genome. Parasites Vectors.  2008;1:11. https://doi.org/10.1186/1756-3305-1-11
  18. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology. 2007;5:873-882. https://doi.org/10.1038/nrmicro1748
  19. Coler RN, Reed SG. Second-generation vaccines against leishmaniasis. Trends in Parasitology. 2005;21:244-49. https://doi.org/10.1016/j.pt.2005.03.006
  20. Desjeux P. Leishmaniasis: Public health aspects and control. Clinics in Dermatology. 1996;14:417-23.https://doi.org/10.1016/0738-081X(96)00057-0
  21. Herwaldt BL. Leishmaniasis. Lancet. 1999;354:1191-99. https://doi.org/10.1016/S0140-6736(98)10178-2
  22. World Health Organization. http://www.who.int/mediacentre/factsheets/fs116/en (2002).
  23. World Health Organization. TDR news. 1990;34:1-7. https://doi.org/10.2307/1146018
  24. World Health Organization. TDR news. 1998;34:1-7. 
  25. Sundar S. Drug resistance in Indian visceral leishmaniasis. Tropical Medicine and International Health. 2001;6:849-54. https://doi.org/10.1046/j.1365-3156.2001.00778.x
  26. Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, Kumar PC, Murray HW. Failure of Pentavalent Antimony in Visceral Leishmaniasis in India: Report from the Center of the Indian Epidemic. Clinical Infectious Diseases. 2000;31:1104-7. https://doi.org/10.1086/318121
  27. Richard JV, Werbovetz KA. New antileishmanial candidates and lead compounds. Current Opinion in Chemical Biology. 2010;14:447-55. https://doi.org/10.1016/j.cbpa.2010.03.023
  28. Prabhu N, Divya RT, Yamuna GK, Siddiqua AS, Pushpa JD. Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Digest Journal of Nanomaterials and Biostructures. 2010;5(1):185-89. 
  29. Silva LP, Pereira TM, Bonatto CC. Frontiers and perspectives in the green synthesis of silver nanoparticles. Green Synthesis, Characterization and Applications of Nanoparticles. 2019:137-164. https://doi.org/10.1016/B978-0-08-102579-6.00007-1
  30. Yadav S, Kumar R, Verma O. GC-MS Profile of Chlorophytumborivilianum leaves and its total phenolic, total flavonoid content and antioxidant activity. International Journal of Biology, Pharmacy and Allied Sciences. 2023; 12(6): 72-82. https://doi.org/10.31032/IJBPAS/2023/12.6.1013
  31. Padmanabhan P, Jangle SN. Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International Journal of Basic and Applied Medical Sciences. 2012; 2:109-116. 
  32. Sharma U, Singh D, Kumar P, Dobhal MP, Singh S. Antiparasitic activity of plumericin&isoplumericin isolated from Plumeria bicolor against Leishmaniadonovani. Indian Journal of Medical Research. 2011;134(5):709-16. https://doi.org/10.4103/0971-5916.91005
  33. Pandiarajan J, Krishnan M. Properties, synthesis and toxicity of silver nanoparticles. Environmental Chemistry Letters. 2017; 15: 387-397. https://doi.org/10.1007/s10311-017-0624-4
  34. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research. 2016; 7: 17-28. https://doi.org/10.1016/j.jare.2015.02.007
  35. Daphne J, Francis A, Mohanty R, Ojha N, Das N. Green synthesis of antibacterial silver nanoparticles using yeast isolates and its characterization. Research Journal of Pharmacy and Technology. 2018; 11: 83-92. https://doi.org/10.5958/0974-360X.2018.00016.1
  36. Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S, Zarghami N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutrition and Cancer. 2017; 69: 1290-1299. https://doi.org/10.1080/01635581.2017.1367932
  37. Firoozi M, Rezapour-Jahani S, Shahvegharasl Z, Anarjan N. Ginger essential oil nanoemulsions: Preparation and physicochemical characterization and antibacterial activities evaluation. Journal of Food Process Engineering. 2020; 43: e13434. https://doi.org/10.1111/jfpe.13434
  38. Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urticadioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences. 2016; 9: 217-227. https://doi.org/10.1016/j.jrras.2015.10.002
  39. Rajkumar V, Guha G, Kumar RA, Lazar M. Evaluation of antioxidant activities of Bergeniaciliata rhizome. Records of Natural Products. 2010; 4: 38. 
  40. Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie GE, Cho KH, Kim KH, Park KC, Eun HC. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. Journal of Investigative Dermatology. 2001; 117: 1218-1224. https://doi.org/10.1046/j.0022-202x.2001.01544.x
  41. Alsareii SA, ManaaAlamri A, AlAsmari M, Bawahab MA, Mahnashi MH, Shaikh IA, Shettar AK, Hoskeri JH, Kumbar V. Synthesis and Characterization of Silver Nanoparticles from Rhizophoraapiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity. Molecules. 2022;27:6306. https://doi.org/10.3390/molecules27196306
  42. Roth SH. Coming to terms with nonsteroidal anti-inflammatory drug gastropathy. Drugs 2012; 72: 873-879. https://doi.org/10.2165/11633740-000000000-00000
  43. Blomqvist P, Feltelius N, Ekbom A, Klareskog L. Rheumatoid arthritis in Sweden. Drug prescriptions, costs, and adverse drug reactions. Journal of Reumatology. 2000; 27: 1171-1177. 
  44. Sharma S, Yadav S, Kumar R. GC-MS Analysis, antioxidant and free radical scavenging activity of Emblica officinalis (amla) extracts. Bulletin of Environment, Pharmacology and Life Accepted for January issue 2024. 
  45. Raveendran P, Fu J, Wallen SL. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chemistry. 2006; 8:34-38. https://doi.org/10.1039/B512540E
  46. Sharifi F, Sharififar F, Sharifi I, Alijani HQ, Khatami M. Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera. IET Nanobiotechnology. 2018; 12(3):264-9. https://doi.org/10.1049/iet-nbt.2017.0204
  47. Khatami M, Alijani H, Sharifi I, Sharifi F, Pourseyedi S, Kharazi S, et al. Leishmanicidal Activity of Biogenic Fe3O4 Nanoparticles. ScientiaPharmaceutica. 2017; 85(4):36. https://doi.org/10.3390/scipharm85040036
  48. Fanti JR, Tomiotto-Pellissier F, Miranda-Sapla MM, Cataneo AHD, Andrade CGTdJ, Panis C, et al. Biogenic silver nanoparticles inducing Leishmaniaamazonensispromastigote and amastigote death in vitro. Acta Tropica. 2018;178:46-54. https://doi.org/10.1016/j.actatropica.2017.10.027
  49. Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N. Green Synthesis of Silver and Titanium Dioxide Nanoparticles Using Euphorbia Prostrata Extract Shows Shift from Apoptosis to G0/G1 Arrest Followed by Necrotic Cell Death in LeishmaniaDonovani. Antimicrob. Agents Chemother. 2015;59:4782-4799. https://doi.org/10.1128/AAC.00098-15
  50. Jebali A, Kazemi B. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicology in Vitro. 2013;27(6):1896-904. https://doi.org/10.1016/j.tiv.2013.06.002